The Long-term and Anti-aging Effect of Qigong for Patients with Chronic Fatigue Syndrome

Ho, Rainbow TH^{1,2}, Chan, Jessie SM^{1,2}, Yuen, LP, Chan, HY¹, Sham, Jonathan ST¹, Chan, Cecilia LW^{1,2}

¹Centre on Behavioral Health ²Department of Social Work and Social Administration The University of Hong Kong, Hong Kong

Outlines

Background

- CF/CFS
- Telomerase activity
- Qigong
- Methods
 - Study design
 - Subjects
 - Data collection and data analysis
- Results
- Conclusion

Background

Chronic Fatigue/Chronic Fatigue Syndrome (CFS)

- Chronic Fatigue is a common complaint both in general population and primary care setting
 - 10.7% in Hong Kong Chinese adult

(Wong & Fielding, 2010)

- Chronic Fatigue Syndrome (CFS) which is distinguished from CF by severity and chronicity, is characterized as unexplained persistent fatigue for at least 6 months
 - 6.4% in Hong Kong population

(Yiu & Yo, 2005)

Chronic Fatigue Syndrome

- Diagnosis criteria (CDC)
 - 1. Unexplained, persistent fatigue

2. <u>Four or more</u> of the following symptoms are present for six months or more:

- 1) Impaired memory or concentration;
- 2) Postexertional malaise (extreme, prolonged exhaustion following physical or mental activity);
- 3) Unrefreshing sleep;
- 4) Muscle pain;
- 5) Multi-joint pain;
- 6) Headaches of a new type;
- 7) Sore throat;
- 8) Tender lymph nodes

(According to: US Centers for Disease Control and Prevention (CDC)).

Current treatments for CFS

- Mainly seek to alleviate symptoms (U.M.Nater, et al, 2011)
- Mainstream medical treatment are often associated with limited clinical benefits (Huibers et al., 2004)
 - Some may even experience undesirable sideeffects (Chen et al, 2010)
- Complementary and alternative therapies are often used by individuals with CF/CFS to manage their symptoms (Afari et al., 2000; Porter et al, 2010)

Traditional Chinese Medicine (TCM)

- CF/CFS is caused by blood stasis due to Qi(vital energy) deficiency
- Stimulation of the blood and Qi circulation (行氣活血) is the core treatment strategy for CF/CFS

(Adam, et al., 2009; Chen, et al., 2010)

Ways of stimulating Qi circulation

- Herbal medicine
- Accuncpture and massage
- Dietary modification
- Moderate exercises related to Qi movement of the body
 - Qigong

Qigong: Body-mind exercise

- Qigong, a body-mid exercise
- Through gentle movements, it helps
 - mind regulation
 - body regulation
 - breath regulation

 Aims to achieve a harmonious flow of vital energy (Qi) in the body

(Manek &Lin, 2012)

Qigong and CFS

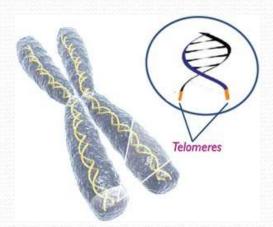
- Two pilot studies have been conducted in patients with CF/CSF for evaluating the beneficial effects of Qigong:
 - Desirable effects were found
 - Improvement in sleep quality, pain, emotional attitude, general mobility.
 - Recommendation: the effects of Qigong should be further tested in large-scale RCTs

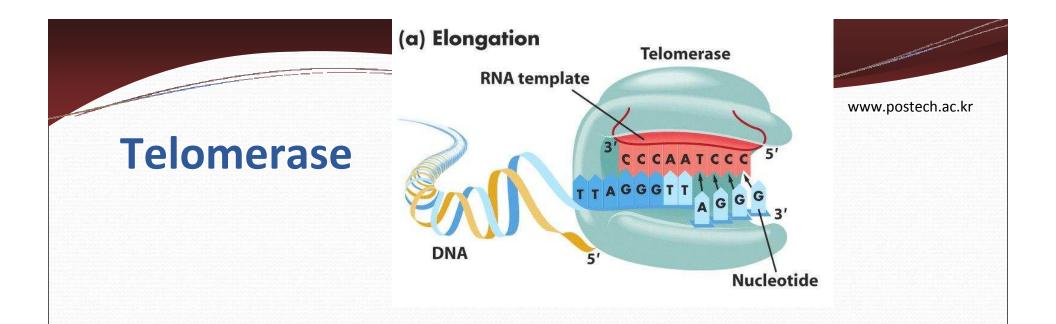
(Craske, et al, 2009; Dybwad, 2007)

Effects of Qigong

Can be considered as multilevel:

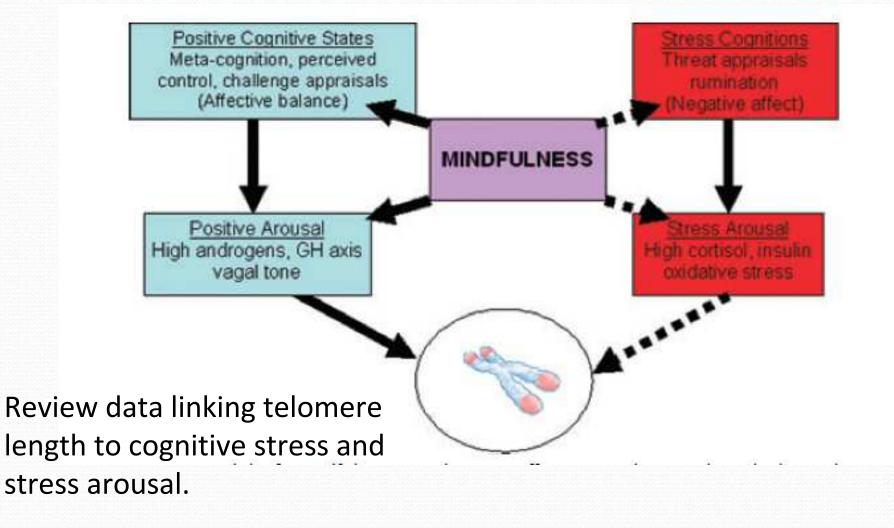
- Disease treatment
- Disease prevention : improve general health through mind-body regulation
- Longevity: prolong life (yang sheng), anti-aging


Longevity and Aging


- Multifactorial
- Cellular aging : the role of telomere

Telomere

- A Telomere is a region of repetitive nucleotide sequences at the end of a chromosome
- It caps chromosomal ends and protect chromosomes from shortening during cell division
- Cell senescence or apoptosis will be the result if telomeres become critically short
- Telomere length (TL) is an indicator of a cell's biological "age"


- A cellular enzyme
- Contains both an essential RNA and a protein reverse transcriptase subunit
- Adds DNA sequence repeats to the end of DNA strands in the telomere regions
- Protects and allows for "reconstruction" of the telomere, thus prolonging cell life

Telomerase

- Telomerase activity >>> Integrity of telomere
- Biomarker
- Indicator of cellular aging
- It has been found that life stress is associated with lower telomerase activity and shorter telomere length in peripheral blood mononuclear cells

Epel, E., et al (2004) PNAS 101: 17312 - 17315

Meditation may slow rate of cellular aging

Epel E. (2009) Annals of the New York Academy of Science. 1172: 34 - 53

Our previous study

 Our Previous Randomized Controlled Trails (RCT) (n=114) has demonstrated that

Qigong exercise had short-term effect in

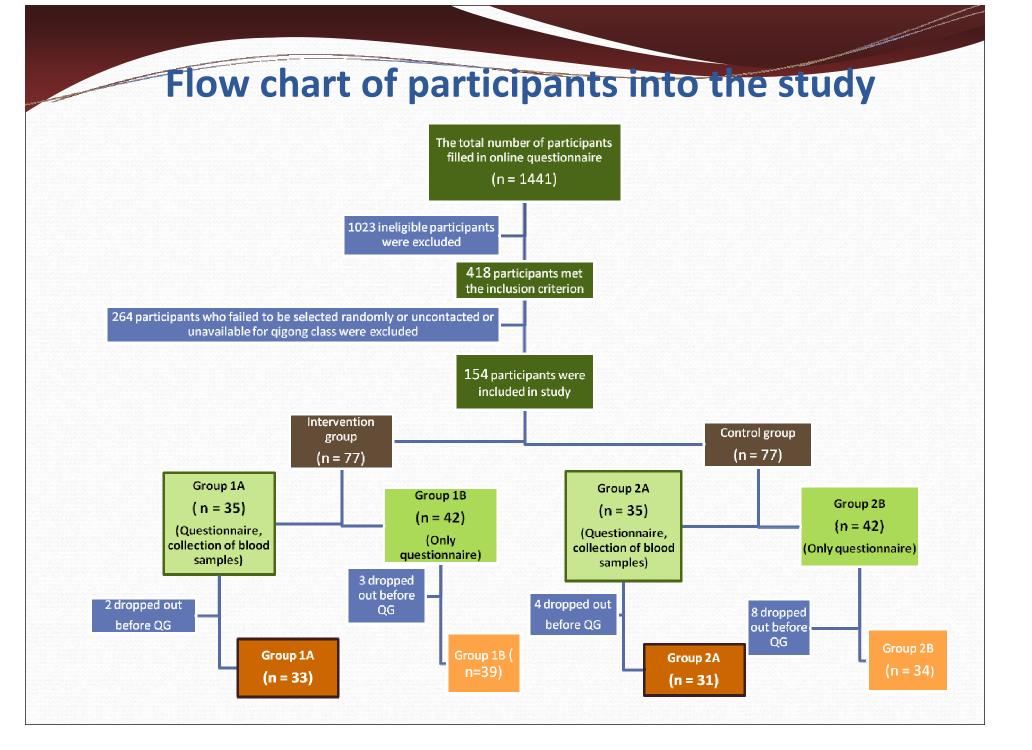
- Reducing fatigue
- Improving quality of life
- Improving the spiritual well-being

(Chan JSM, et al. (Abstract) Annals of Behavioral Medicine, s224, 2011)

Objectives

 To assess the long-term effects of qigong exercise on fatigue and quality of life in terms of physical and mental functioning

 To assess the impact of qigong exercise on telomerase activity (an anti-aging biomarker)


Methods

Study design

Randomized waitlist-controlled trial

• Participants:

- Community sample
- Adults aged 18-55 years old
- Had CF/CFS symptoms based on self-reported symptoms and medical history by online screening questionnaire based on CDC CFS criteria
- Without medical examination by physician

Prospective Randomized Controlled Trial (RCT)

154 participants were randomly selected from a pool of 418 qualified participants. They were then randomly allocated into:

- Intervention group: n = 77 (5 dropped out, final n=72)
- Control group = 77 (12 dropped out, final n=65)
- From each group, we randomly selected 35 participants for telomerase activity assessment:
 - n= 33 (2 dropped out from 35) in intervention group
 - n= 31 (4 dropped out from 35) in control group

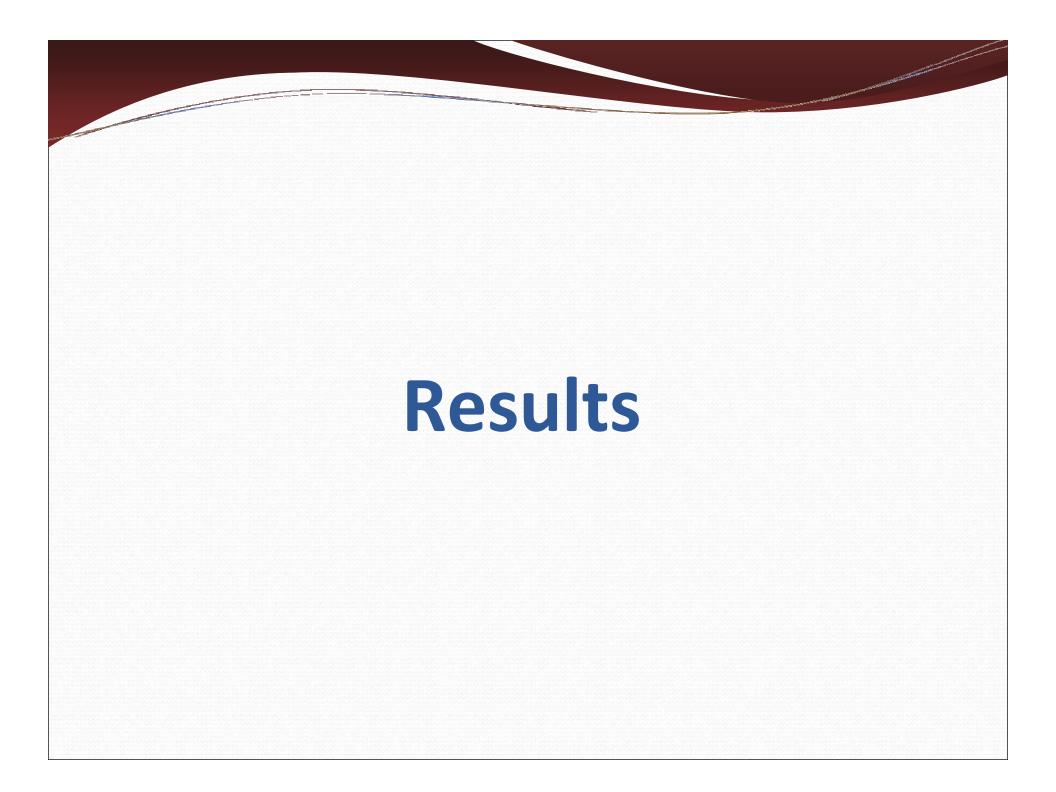
Intervention

- 10 sessions of exercise qigong (wu xing ping heng gong, 五 行平衡功)
- 2 hours per session, and twice a week for 5 weeks
- Self practice (15 30 minutes per day) at home
- Two parts
 - Movement exercise (10 forms)
 - Meditation

Outcome measurements

- Fatigue level: Chalder's Fatigue (CF) scale
 - Total fatigue score: sum of all items
 - Physical fatigue: sum of items 1 8
 - Mental fatigue: sum of items of 9 14

Quality of life: SF-12 Health Survey Questionnaire


- Physical Component Summary (PCS)
- Mental Component Summary (MCS)

Telomerase activity in blood sample

Data collection

- Demographic data, lifestyle, Chalder's fatigue, SF-12 were collected through the online questionnaire
 - Three time points
 - Baseline (TO)
 - 5 weeks, Post-training (T1)
 - Post-3 months (T2)

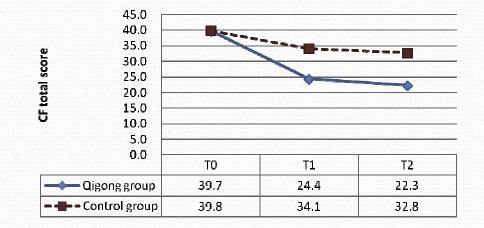
Telomerase activity in blood sample collected at T0 and T2

Table 1 Patients' demographic information (n=137)

Demographic	Intervention (n = 72)		Control	Control $(n = 65)$	
	Mean (SD)	N (%)	Mean (SD)	N (%)	
Age (years)	42.4 (6.7)		42.5 (6.4)		.979
Gender					
Female		52 (72.2%)		53 (81.5%)	.198
Employment					
Full-time		55 (76.4%)		52 (80.0%)	
Part-time		3 (4.2%)		1 (1.5%)	()(
Housewife		9 (12.5%)		10 (15.4%)	.629
Unemployed		4 (5.6%)		1 (1.5%)	
Other		1 (1.4%)		1 (1.5%)	
Education					
Form 1 to 5		23 (31.9%)		26 (40.0%)	
Form 6 to 7		7 (9.7%)		7 (10.8%)	1.4
Tertiary or University		34 (47.2%)		19 (29.2%)	.14
Master or above		7 (9.7%)		13 (20.0%)	
Other		1 (1.4%)		0	
Marital status					
Single		21 (29.2%)		23 (35.4%)	
Married/cohabiting		46 (63.9%)		38 (58.5%)	10
Divorced/separated		5 (6.9%)		2 (3.1%)	.43
Widowed		0		1 (1.5%)	
Other		0		1 (1.5%)	
Religion		21 (29.2%)		24 (36.9%)	.334
Yes		21 (29.2%)		24 (30.9%)	.334
Income					
< 10,000		11 (15.3%)		6 (9.2%)	
10,000 – 19,999		20 (27.8%)		18 (27.7%)	
20,000 - 29,999		9 (12.5%)		8 (12.3%)	.824
>= 30,000		9 (12.5%)		10 (15.4%)	
No income/not available		10 (13.9%)		7 (10.8%)	
Don't want to answer		13 (18.1%)		16 (24.6%)	

 Table 2 The lifestyles and the influences of Chronic Fatigue Syndrome (CFS) (n = 137)

	Intervention $(n = 72)$	Control $(n = 65)$	<i>P</i> *	
	N (%)	N (%)		
Exercise habit				
Do exercise occasionally	53 (73.6%)	48 (73.8%)	.975	
Do exercise regularly	19 (26.4%)	17 (26.2%)		
Smoking			100	
Yes	6 (8.3%)	2 (3.1%)	.190	
Alcohol drinking			0.00	
Yes	31 (43.1%)	22 (33.8%)	.269	
CFS affected work and/or life	62 (86.1%)	52 (80.0%)	.339	
Feel being misunderstood	37 (51.4%)	37 (56.9%)	.516	


Table 3 Chalder's fatigue (CF) scale (n = 1.

	Intervention $(n = 72)$	Control $(n = 65)$	<i>P</i> *
	Mean (SD)	Mean (SD)	
CF total score			
Before (T0)	39.7 (6.6)	39.8 (6.3)	.916
Post training (T1)	[15] 24.4 (12.0)	[3] 34.1 (8.8)	.000
Post 3-month (T2)	[19] 22.3 (11.6)	[7] 32.8 (9.7)	.000
T1 – T0	[15] -14.7 (10.3)	[3] -5.8 (7.3)	.000
T2 – T0	[19] -16.1 (10.8)	[7] -6.8 (8.2)	.000
CF physical score			
Before (T0)	24.7 (4.0)	24.6 (3.7)	.887
Post training (T1)	[15] 14.8 (7.4)	[3] 21.0 (5.2)	.000
Post 3-month (T2)	[19] 13.7 (6.8)	[7] 20.4 (5.8)	.000
T1 – T0	[15] -9.7 (6.5)	[3] -3.6 (4.2)	.000
T2 – T0	[19] -10.5 (6.6)	[7] -4.0 (5.0)	.000
CF mental score			
Before (T0)	15.0 (3.8)	15.2 (3.9)	.750
Post training (T1)	[15] 9.6 (5.5)	[3] 13.1 (4.6)	.000
Post 3-month (T2)	[19] 8.9 (5.4)	[7] 12.3 (4.9)	.001
T1 – T0	[15] -5.0 (4.7)	[3] -2.2 (3.7)	.000
T2 – T0	[19] -5.6 (5.3)	[7] -2.8 (3.8)	.000

CF: Chalder's fatigue, * T-test, [Number of missing data],

Chalder's fatigue scale (n=137)

CF total score

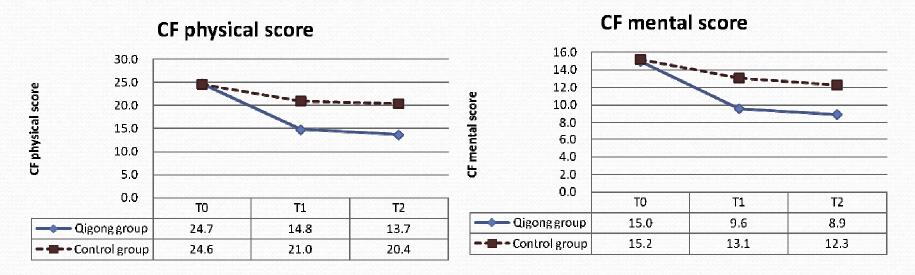
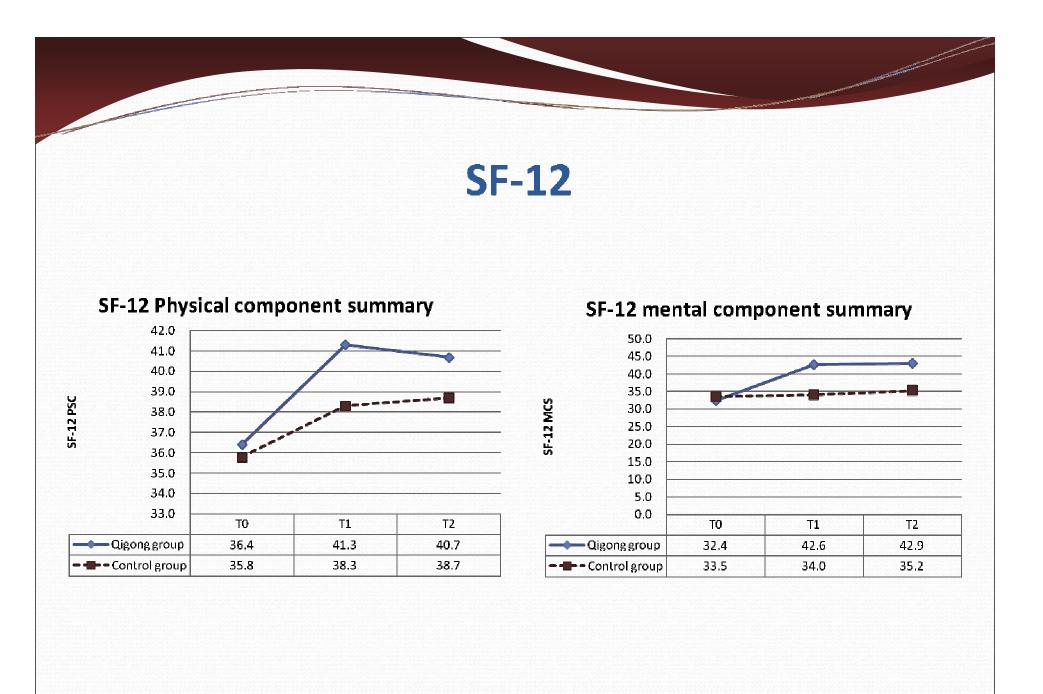



Figure 1. Comparison of Chalder's fatigue (CF) scale between two groups (n = 137)

Table 4 Quality of life (SF-12) (n = 137)

	Intervention $(n = 72)$	Control $(n = 65)$	P^*
	Mean (SD)	Mean (SD)	
SF-12-PCS score			
Before (T0)	36.4 (6.6)	35.8 (7.2)	.632
Post training (T1)	[15] 41.3 (7.0)	[3] 38.3 (7.6)	.026
Post 3-month (T2)	[19] 40.7 (7.6)	[7] 38.7 (6.8)	.154
T1 - T0	[15] 4.8 (7.0)	[3] 2.6 (5.9)	.072
T2 – T0	[19] 4.4 (7.4)	[7] 3.2 (6.6)	.373
SF-12-MCS score			
Before (T0)	32.4 (10.2)	33.5 (8.7)	.514
Post training (T1)	[15] 42.6 (8.5)	[3] 34.0 (9.1)	.000
Post 3-month (T2)	[19] 42.9 (9.3)	[7] 35.2 (10.3)	.000
T1 – T0	[15] 9.8 (11.9)	[3] 0.5 (8.1)	.000
T2 – T0	[19] 8.2 (11.7)	[7] 1.2 (9.5)	.001

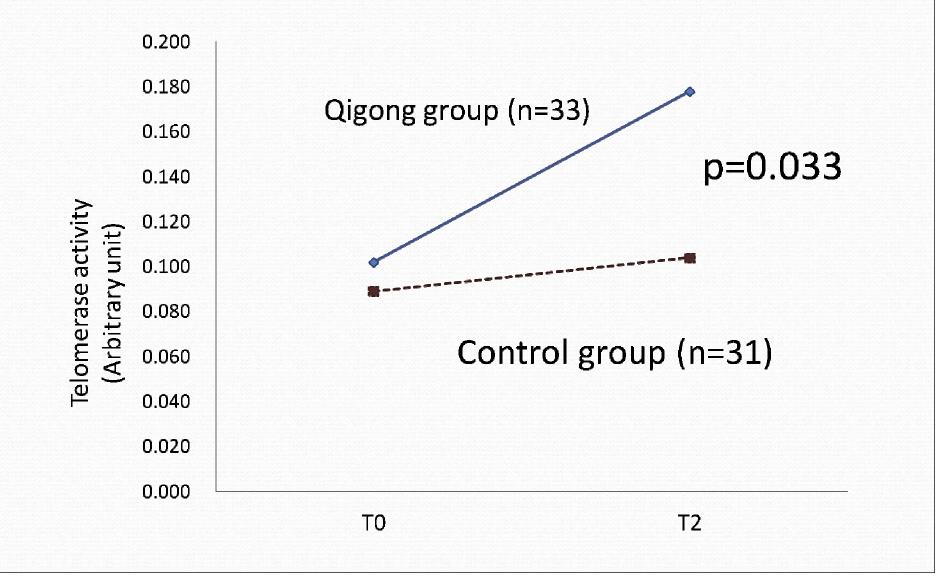

PCS: physical component summary, MCS: mental component summary * T-test, [Number of missing data]

Table 5 Telomerase activity (n=64)

Telomerase activity	Intervention group		Control group 2A	P*
(Arbitrary unit)	1A	1A		
(Arolitary unit)	(n = 3	(n = 33)		
	Mean (Mean (SD)		
Before (T0)	0.102 (0.051)		0.089 (0.036)	.238
Post 3-month (T2)	0.178 (0.201)		0.104 (0.059)	.049
Т2 –Т0	0.077 (0.198)		0.015 (0.062)	.099
*T-test				
Telomerase activity	Baseline	Post-3 month	Difference	<i>P</i> *
(Arbitrary unit)	(T0)	(T2)	(T2 - T0)	
	Mean (SD)	Mean (SD)	Mean (SD)	
Intervention group $(n = 33)$	0.102 (0.051)	0.178 (0.201)	-0.077 (0.198)	.033
Control group $(n = 31)$	0.089 (0.036)	0.104 (0.059)	-0.015 (0.062)	.176
*Pairwise T-test				

Telomerase activity (n = 64)

Limitations

• Some subjects might not fully meet the CDC criteria for CFS

- Subjects recruited from the community
- The diagnosis only based on the self-reported symptoms and medical history
- No further medical examination
- Telomerase activity was not tested at the post-intervention (T1) and only performed on some but not all participants in two groups

Level of perceived stress was not measured

Conclusions

- Qigong exercise helps reduce fatigue and improve mental functioning in long term and also has potential anti-aging effects on CFS patients.
- Further research using bigger sample with measurement of telomerase activity should be conducted in future.

Acknowledgment

 This study is supported by a donation made to The Centre on Behavioral Health, The University of Hong Kong

Team members:

- Prof. Chan, Cecilia L.W. (CBH)
- Prof. Sham, Jonathan, S.T. (CBH)
- Prof. So. K.F. (Dept of Anatomy)
- Dr. Yuen, L.P. (Qigong Master)
- Ms. Chan, Jessie S.M. (CBH)
- Mr. Lau, Benson (Dept of Anatomy)
- Dr. Wang, Alan C.W. (CBH)
- Mr. Chan, Timothy H.Y. (CBH)

Thank You!

Dr. Rainbow T.H. Ho

Email: tinho@hku.hk

Centre on Behavioral Health The Department of Social Work and Social Administration The University of Hong Kong

